An Investigation Into the Effect of the PCB Motion on the Dynamic Response of MEMS Devices Under Mechanical Shock Loads

نویسندگان

  • Fadi Alsaleem
  • Mohammad I. Younis
  • Ronald Miles
چکیده

We present an investigation into the effect of the motion of a printed circuit board (PCB) on the response of a microelectromechanical system (MEMS) device to shock loads. A two-degrees-of-freedom model is used to model the motion of the PCB and the microstructure, which can be a beam or a plate. The mechanical shock is represented as a single point force impacting the PCB. The effects of the fundamental natural frequency of the PCB, damping, shock pulse duration, electrostatic force, and their interactions are investigated. It is found that neglecting the PCB effect on the modeling of MEMS under shock loads can lead to erroneous predictions of the microstructure motion. Further, contradictory to what is mentioned in literature that a PCB, as a worst-case scenario, transfers the shock pulse to the microstructure without significantly altering its shape or intensity, we show that a poor design of the PCB or the MEMS package may result in severe amplification of the shock effect. This amplification can cause early pull-in instability for MEMS devices employing electrostatic forces. ©2008 American Society of Mechanical Engineers

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of nonlinear rectangular plates subjected to an orbiting mass based on shear deformation plate theory

In this paper, transverse and longitudinal vibration of nonlinear plate under exciting of orbiting mass is considered based on first-order shear deformation theory. The nonlinear governing equation of motion are discretized by the finite element method in combination with Newmark’s time integration scheme under von Karman strain-displacement assumptions. For validation of method and formulation...

متن کامل

The Dynamic and Vibration Response of Composite Cylindrical Shell Under Thermal Shock and Mild Heat Field

In this article, the vibration and dynamic response of an orthotropic composite cylindrical shell under thermal shock loading and thermal field have been investigated. The problem is that the shell is initially located at a first temperature, and some tension caused by a mild heat field is created, then the surface temperature of the cylinder suddenly increases. The partial derivative equations...

متن کامل

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

Response of Mems Devices under Shock Loads

There is strong experimental evidence for the existence of strange modes of failure of MEMS devices under shock. Such failures have not been explained with conventional models of MEMS. These failures are characterized by overlaps between moving microstructures and stationary electrodes, which cause electrical shorts. This work presents a model and simulation of MEMS devices under the combinatio...

متن کامل

Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces.

There is strong experimental evidence for the existence of strange modes of failure of microelectromechanical systems (MEMS) devices under mechanical shock and impact. Such failures have not been explained with conventional models of MEMS. These failures are characterized by overlaps between moving microstructures and stationary electrodes, which cause electrical shorts. This work presents mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008